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Sectional category of a class of maps

Jean-Paul Doeraene, Mohammed El Haouari, and Carlos Ribeiro

ABSTRACT. We propose a definition of ‘sectional category of a class of maps’.
This combines the notions of ‘sectional category’ of James, and ‘category of a
class of spaces’ of Clapp and Puppe.

The category cat X of a space X in the sense of Lusternik and Schnirelmann is
the smallest number n such that there exists an open covering {Up,...,Un} of X
for which each inclusion U; = X is nullhomotopic. In [1], M. Clapp and D. Puppe
introduced the A-category of X, where A is a class of spaces, replacing ‘is nullhomo-
topic’ in the previous definition by ‘factors through some space of A’. On the other
hand, the sectional category secatp of a fibration p: E — X, originally defined by
Schwarz [12], is obtained by replacing ‘each inclusion U; — X is nullhomotopic’ in
the previous definition by ‘p has a local section on each of the open sets U;’. Here
we gather these ideas by defining the sectional category of a class of maps with
same target X.

We propose the Ganea and the Whitehead versions of this definition, as well
as the open covering approach.

Sectional category earned its renown recently thanks to Farber’s notion of topo-
logical complexity of a space A ([6]), which measures the difficulty of solving the
motion planing problem: the topological complexity of A is the sectional category of
the diagonal A: A — Ax A. Hence, particular attention is devoted to the sectional
category of classes of maps with target A X A containing (or not) the diagonal.

Throughout this paper T will be a category of topological spaces and maps.
It can be just topological spaces and continuous maps, but also pointed topolog-
ical spaces and maps, G-equivariant topological spaces and maps, or else filtered
topological spaces and maps. To assure that everything goes well, T should be a
J-category in the sense of [3]. In [11], it is shown that different notions of sectional
category are obtained for different J-structures, but coincide under reasonable con-
ditions.
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1. The Ganea point of view

DEFINITION 1.1. For any finite sequence S = (19: Ag = X,... 1,: A, = X)
of maps of T, the Ganea construction of S is the following sequence of homotopy
commutative diagrams (0 < 7 < n):

i+1

G
/
G;

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map Gi+1 = (Giy tig1): Git1 — X is the whisker map induced by
this homotopy pushout. The iteration starts with go=19: Ay = X.

We can summarize all this by saying that g, is the iterated join over X of all
maps in S.

We denote G, by G(S) and g,, by 9(S). We also write 9n(tx) instead of g(S)
when § = (1x,...,1x).

A
>
F;

DEFINITION 1.2. Let A be a class of maps of T with same target X. The
sectional category of A is the least integer n such that there exists a sequence S
of n + 1 maps in A, 9(8): G(S) - X having a homotopy section, i.e. a map
0: X — G(S) such that g(S) oo ~ idy.

We denote the sectional category by secat (A). We write secat (tx) = secat (A)
when A is reduced to the single map tx: A — X. In this case, there is only one
sequence of length n + 1 of maps in A which is (¢x,--.,ex). If T is pointed with
* as zero object, we write cat (X) = secat (A) when A is reduced to the single
map * — X. The integer cat (X ) is the ‘normalized’ version of the Lusternik-
Schnirelmann category.

We shall also write: infcat (A4) = inf{secat (¢) | . € A}.

REMARK 1.3. Clearly, for any class A, secat (A) < infcat (A).

EXAMPLE 1.4. Let X be a fixed space in T, and let A be a class of spaces in
T. Then A-cat(X) in the sense of [1] is secat (A) where A is the class consisting of
all maps from any space in A to X.

EXAMPLE 1.5. Let T be the category of stratified spaces and maps. Consider
X a foliated manifold in T and let A be the class of all inclusions 4 < X where
A is a transverse subspace of X, i.e. AN F is at most countable for any leaf F
of X. Then secat (A) is actually the transverse LS-category of X introduced by
H. Colman [2] while infcat (4) is actually the open LS-category of X introduced by
J.-P. Doeraene, E. Macias-Virgés and D. Tanré [5].

In fact, it appears that here secat (A) = infcat (4). Indeed in the light of
Theorem 3.3, secat (A) < n when there is a covering of X with open subspaces U,
0<ig n) which are each deformable in X to a transverse subspace A4; of X, in

n
a stratified way. Then each U; is deformable in a stratified way in X to A= |J A,
1=0

which is also transverse. Hence infcat (A4) < n.
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PROPOSITION 1.6. Let f: X — Y be a map in T and assume that we have a
sequence of homotopy commutative squares in T O0<i<n):

A x

() |k

Then, for the corresponding sequences S = (1g, . . ., tn) and R = (19,...,m,) of
maps in T, there is a homotopy commutative diagram

o) 8, x

(1 | lf

In particular, if for any map 1: A — X in a class A there exists a mapT7: B —
Y in a class B with a homotopy square (t), and if f has a homotopy section, then
secat (B) < secat (A).

On the other hand, if for any map 7: B = Y in a class B the square (1) s a
homotopy pullback and the map ¢ is in a class A, then the diagram (1) is also a
homotopy pullback and in this case secat (A) < secat (B).

PROOF. We can see that there is a map ¢: G(S) — G(R) such that g(R)op ~
f 0 g(S), using the Join Theorem ([4, Theorem 51]) recursively in the following
diagram:

Fz(S) >Ai+1

H Giri lCiﬂ
’ . Ti4+1
/ i /
Gi (R) _— Gi-{-l (R) """""""""""""""""" »Y

beginning with ¢y = {y and ending with © = Yn.

Assume f has a homotopy section s. If g(S) has a homotopy section o, then
g(R) has a homotopy section ¢ o ¢ o s.

Assume the starting squares (1) are homotopy pullbacks. Then so is the front
rightmost one in the above diagram for any i < n, thus (1) is a homotopy pullback.
If g(R) has a homotopy section o, then g(S) has a homotopy section which is the
induced map (Yo f, idx). O

DEFINITION 1.7. There is a preorder on maps of T with same target X defined
by: t: A— X % 7: B — X if « factors through 7 up to homotopy, i.e. there is a
map (: A — B such that 70 ( ~ .

This preorder extends to classes of maps of T with same target X: we write
A = B if each map of A factors through at least one map of B up to homotopy. We
write A~ B if A > B and B = A.
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REMARK 1.8. If A is a subclass of A, then A= A

With f = idx in Proposition 1.6 we get:

PROPOSITION 1.9. For any classes A and B of maps in T with same target X:
B < A = secat (B) < secat (A).

COROLLARY 1.10. Let T be pointed. For any class A of maps in T with same
target X :
secat (A) < cat (X).

COROLLARY 1.11. For any class A of maps in T with same target X, and any
subclass A of A, we have A < A and secat (A) < secat (A). If, moreover, each map
of A factors up to homotopy through at least one map of A, then also Ax A and
secat (A) = secat (A).

REMARK 1.12. From this fact, we may often replace a class A by a smaller or a
greater one to compute secat (A). In particular, we can keep only one representative
for each homotopy class of maps of A. Conversely, we can always assume that all
maps equivalent (for the relation ~) to some map of A are also in A.

COROLLARY 1.13. For any class A of maps in T with same target X, if A
contains a map 7: B — X such that each map of A factors through T, then
secat (A) = infcat (A) = secat (7).

ExXAMPLE 1.14. Let T be pointed and let A be the set of the two maps in; : A—
AVBanding: B AVB. It is known that secat (in;) = cat (B) and secat (ing) =
cat (A); hence infcat (A) = min{cat A4, cat B}. But secat (A)=1(or 0if A~ x*or
B =~ x). Indeed apply the ‘Whisker Maps inside a Cube’ Lemma ([4, Lemma 49])
to the following diagram to get the section of g(ini, ing):

This shows that secat (A) can be strictly less than infcat (A).

ExXAMPLE 1.15. Let A and B be the homotopy cofibres of two applications
§2 — §2 of degrees relatively prime numbers p and g respectively, let X = A x B;
let A be the set of the two maps iny;: A — A x B and in: B — Ax B. It is known
that secat (in;) = cat (B) and secat (ing) = cat (A). But A and B are suspensions,
hence cat A = cat B = 1. Thus secat (A) = 1.

Now consider the map 7 = g(inj,ing) which is a lower bound of A (for the
preorder <) by construction. This is the inclusion AV B < Ax B. Then Hy(A) =
Z, and Ha(B) = Zg, hence by the Kiinneth formula, H,(7) is an isomorphism, and,
by Whitehead’s theorem, 7 is a homotopy equivalence. Thus secat (1) = 0.

This shows that secat 7, where 7 is the join of two minimal maps of A, can be
strictly less than secat (A).
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PROPOSITION 1.16. Let us denote by lq] the integer part of any rational number
q. For any class A of maps with same target X, consider the class Ay (respectively:
Agk) of all maps g(S) where S is any sequence of k+1 (respectively: at most k+ 1 )
maps of A (not necessarily distinct). Then:

secat (A) |
k+1

PROOF. Any sequence of n+1 maps of Ay, is a sequence R = (g(Sp), . . . ,9(Sn)).
By associativity of the join, g(R) ~ g(Sp + --- + S,) where Sy + +-- + S, is the
concatenation of the sequences S;, which is a sequence of (n+ 1)(k+ 1) maps of A.
But secat (Ax) is the least integer n such that there exists a sequence R of n + 1
maps of Ay, such that g(R) has a homotopy section. Thus, if secat (A4) = m, then n
will be such n(k+1) < m+1 < (n+1)(k+1), that is i k—_lf_l Sn<Ffg+ %ﬂ,
hence n = | % ]. Finally secat (A¢x) = secat (A) by Corollary 1.11. O

secat (Agk) = secat (Az) = |

As a particular case, when 4 is made of only one map tx, then Ay is made of
the single map gx(vx). Then:

COROLLARY 1.17. For any map tx: A — X, secat (gx(1x)) = P%(I“‘)J

2. The Whitehead point of view

DEFINITION 2.1. For any finite sequence 7 = (79: By — X0y, Tn: By = X,,)
of maps of T, the Whitehead construction of T is the following sequence of homotopy
eommutative diagrams (0 <7 < n):

HE Xj X Bz‘+1

i idx. )X 741

i1
T % B: o — S TTH x
i X Biy Tita tort Il X,
idp. X7 /
T x Xit1

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map ¢;,1 : Ty, — HBH X is the whisker map induced by this
homotopy pushout. The induction starts with g = 79 : Bp — Xo.

We denote T, by T(T) and t,, by ¢(T).

REMARK 2.2. The product symbol x means here the homotopy pullback over
the terminal object e; it is the true pullback when the objects are e-fibrant. In the
category Top or Top*, all objects are e-fibrant, hence these are true pullbacks.

THEOREM 2.3. For 0 <1< n, let
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be homotopy pullbacks in which T — (10,...,7) are sequences of maps in T.
Then denoting S = (4, .. -y tn), the map g(S): G(S) - X has a homotopy sec-
teon if and only if the induced map f = (for-- s fn): X — IT5 X; factors through
t(T): T(T) = I1o X; up to homotopy.

Keep in mind the important particular case in which f; = id x, so that ¢, = 7;
and f is the diagonal map A: X — xn+1

PROOF. It is a standard argument (following the lines of [7, Theorem 8]) to
prove that there is a homotopy pullback:

G(S) —— T(T)
9(8) lt(T)

and the result follows. O

We extend the notion of ‘category of a map’ by the following definition:

DEFINITION 2.4. Let T be pointed and let be a class of maps X with same
source X. The category of X is the least integer n such that there exists a sequence
00 X = Xo,..., f: X — Xy, of n 4+ 1 maps in X such that the induced map f———
(fos- s fn): X — Iy X; factors through ¢(7): T(T) — IT5 X; up to homotopy,
where T = (x = Xoy. .., % = X,).

We denote this integer by cat X.

As a particular case, when there is only one map f: X — Xo in X, we recover
the usual definition of cat f, and when this map [ is the identity on X (so that
f= A), we recover cat X.

Observe that Theorem 2.3 shows that the category of a class is nothing but a
particular case of sectional category of (another) class:

COROLLARY 2.5. Let T be pointed and let be a class of maps X with same
source. Then

cat X = secat A
where A is the class consisting of the homotopy fibers of the maps of X.

EXAMPLE 2.6. Consider any A% +xand B % «in T and let X — {pr;: AxB —
A,pry: A x B — B} the set of the two projections. The set of homotopy fibers of
Ais A= {ing: B~ Ax B,in;: 4 < A4 x B}. By Corollary 2.5 cat X = secat A.
Indeed, in this case g(ing,in;) ~ t(x —» A, — B): AVB < A x B and f=
(pry,pry) =~ idayx p.

EXAMPLE 2.7. Consider any A% +«and B ¢ xin T and let X — {pr;: AvB =
A,pry: AVB = B} the set of the two projections. Consider the set of homotopy
fibers of X: A = {1;: F} - Av B,i3: Fy - AV B}. Hence by Corollary 2.5,
cat X = secat A. In this case tx - Ax - B) ~ f = (pry,pry): AVB < Ax B
and of course f factors through t(x — A4, % — B) up to homotopy. Hence, cat X = 1.
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EXAMPLE 2.8. Let 4 be a connected, CW H-space, and let D: A x A — A the
map such that pr;-D ~ pr,. The diagonal map A: 4 — Ax A4 is the homotopy fibre
of D ([10, Proposition 3.7]). Thus secat (A) = cat (D) and secat ({iny, ing, A}) =
cat ({pry, pry, D}). Note that in this case secat (A) = cat (A) by Proposition 1.6.

3. The open covering point of view

In this section, we work in the category Top*, even if some things can be done
in a wider context of a category T.

PROPOSITION 3.1. Let be any sequence T = (To: Bo = Xo,...,7Tn: By <> Xn)
of closed cofibrations in Top*. Then:

T(T) = {(zo,...,zn) € HXj | z € By, for some k}
j=0

and T(T) — H;Z:O Xj is a closed cofibration.

PROOF. We have the following commutative diagram where all squares are
pullbacks, and, since the projections are fibrations, homotopy pullbacks as well:

T; X Bi+1>——> H:) Xj X Bz'+1 -_— Bi+1

TIL' X Xi+1>-——) HZO Xj X Xi+1 ——»Xi+1

J _—

T I X, —— 5%

Since B;11 — X;41 is a closed cofibration and T; x Xiy1 — Xi41 is a fibration,
T; x Biy1 — T; x X;41 is also a closed cofibration, by [13, Theorem 12]. And
similarly, assuming that 7, — Hz) X is a closed cofibration by induction hypothesis,
T; X Bixq — HB X; X By is also a closed cofibration. But then, the homotopy
pushout T, is the true pushout. Moreover, the map T;4; — Hé“ X is closed,
and it is a cofibration by |13, Theorem 6]. ) O

DEFINITION 3.2. Let 7: B — Y and f: X =Y be maps in Top*. A subspace
U of X is said (1, f)-categorical if there is a map s: U — B so that the restriction
of f to U is homotopic to 7 o 5. If the context makes it clear what = and f are, we
say also that U is B-categorical.

Saying that 7: B — Y is a closed cofibration means that 7 is an embedding
and (Y, B) is a NDR-pair; in particular there is an open subset N of Y such that
B C N CY and N is (7,idy )-categorical.

We have the following characterization of secat A or cat X in terms of open
categorical covering:

THEOREM 3.3. Let A be a class of maps with the same target X, a well-pointed

normal space. Then secat A is the least integer n, such that there ezists a sequence

= (t0: Ao = X,...,1,: A, — X) of n+ 1 maps of A and there is an open
covering (Us)ogi<n of X, each U; being A;-categorical.
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THEOREM 3.4. Let X be a class of maps with the same source X, a well-pointed
normal space, and whose targets are path-connected spaces. Then cat X is the least
integer n, such that there exists a sequence (fos---, fn) of n+ 1 maps of X and
there is an open covering (Us)ogi<n of X, each filu, being nullhomotopic.

These theorems are consequences of the following proposition:

PROPOSITION 3.5. Let T = (10: Bo < Xo,+-+,Tnt Bn = X,) be any sequence
of closed cofibrations and let fo: X — Xo, ..., fn: X — X, be a sequence of maps
in which X is a normal space. Then the induced map f = (fo,.-- fn) factors
through t(T): T(T) — I X; up to homotopy if and only if there is an open
covering (U;)ogisn of X, each U; being B, -categorical.

PROOF. (<«.) By hypothesis, there is a covering (U, ...,Up) of X by open
sets, and deformations H;: U; X I = X; of fi|y, into a map with values in B;, for
0 < i < n. As X is normal, there exists a covering of X by open sets, (Wo, ..., Wo),
such that W; ¢ U;, for 0 < @ < n. For any i, we choose a Urysohn function
¢i: X — I such that p;(z) =1ifz € W, and @;(z) = 0 if z & U;. We define now
a continuous map I:Ii: X xI— X;by:

- Hi(z,pi(z)t) ifx e U,

Hi(w,t) = { fi(zx) otherwise.
We collect these maps in a continuous map H: X xI — 15 X; defined by H(z,t) =
(Ho(z,1) .. ., Hy(z,t)). Observe that H(z,0) = (fo(z), .. - ful@) = fl2).

Set 7(z) = H(x,1). Since the W/s are a covering of X, for any point x €
X, there is a Wy with € Wi. By definition of Hy, Hip(z,1) = Hy(z,1) €
By. As the maps ; are closed cofibrations, T'(T) = {(z0,..-,zn) € [1o Xjlzx €
B, for some k}, and we deduce r(X) C T(T) and r is a lifting up to homotopy (by
the homotopy H) of f.

(=.) By hypothesis, there is a map r: X — T(T) and a homotopy H: X xI —
15 X: between f and the composite t(T) o 7.

For any 0 < i < n, as (Xj, B;) is a NDR-pair, there exists also an open set N;,
B; C N; C X;, and a deformation G;: N; x I — X; of N; — X, into a map with
values in B;. Let p;: Hg X; — X be the i-th projection. We set h; = p; o t(T)or
and U; = h7*(N;). Then, since r(X) C T(T) = Urop; *(Bi), X = Uiz Us-
Hence the U/s are a covering of X. Define H;: U; x I — X, by:

piH(u,2t ifo<t<1/2,

Hi(u,?) :{ Gi(hi(u),2t)—1) if1/2 <t </1.
This is well defined since p; H (u, 1) = h;(u) an H; is a homotopy between filu, and
a map with values in B;. d

PROOF OF THEOREM 3.3. We can use Theorem 2.3 (where f; = idx) and
Proposition 3.5 directly if the maps in A are closed cofibrations. If they are not,
we can replace them as follows:

b
fi X
AN
X id

L

— ' »

b
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decomposing first ¢; in A4 into a closed cofibration v; followed by a fibration which
is a homotopy equivalence (by [14, Proposition 2]), and then choosing a section fi
of it; this section exists since X is well-pointed and thus cofibrant. For an open set
U; of X, being (i, fi)-categorical is equivalent to be (1;,idx )-categorical, and we
can apply Proposition 3.5. O

PROOF OF THEOREM 3.4. As in the previous proof, we make the following
change of targets:
T;‘/\

X

A
For an open set U; of X, f;|y, nullhomotopic <= fi factors through * — X;
(since X; is path-connected) <= U; is (7, fi)-categorical, and we can apply
Proposition 3.5. J

*

REMARK 3.6. Following the lines of [8, 1.3, 7.1 and 8.3], we can obtain lower
bounds for secat and cat of a class of maps from cohomology. Consider the singular
cohomology theory H*, with any coefficient ring, and the corresponding reduced
theory H*. Let nilR denote the nilpotency index of the ring R (this is the least
integer n such that R™ = 0).

If A is a finite set of maps ¢;: A; — X with same target:

secat A + 1 > nil (N,,c 4 ker )

where ¢} : H*(X) — H*(A;) denotes the induced homomorphism.
If X is a finite set of maps f;: X — X, with same source:

cat X +1 2> nil (Nyg,cx im f])
where f : H*(X;) = H*(X) denotes the induced homomorphism.

EXAMPLE 3.7. Let A and B be two spaces, and consider the inclusions iny: A <
AxBanding: B — AxB. Assume A and B are ‘reasonable’ spaces, so that the in-
clusions are closed cofibrations and A x B is normal. Then secat (A4) = infcat (A) =
min{cat A, cat B}.

Indeed, first recall that secatin; = cat B and secating = cat A; hence by Re-
mark 1.3, secat .4 < min{cat A, cat B}.

Conversely, assume that secat A = p 4+ ¢ — 1 and that we have a covering of
A x B formed by p open sets U; (i = 1,2,...,p) with deformations of U; into A
and q open sets V; (j = 1,...,q) with deformations of V; into B.

If p = 0, then fix any point by € B. The sets pry(4 x {bo} NV;) (pr, being the
first projection) are contractible in A and cover A. Hence cat A < g—1. We can
do the same reasoning if ¢ = 0 and conclude that cat B < p—1.

We now suppose that p # 0 and ¢ # 0. As above fix a point by € B. and
consider the sets A x {bo} N V; and their projections O; = pr,(4 x {bo} N Vi)
which are contractible in A. If they cover A, we are done: cat A < q— 1. Butin
general there may be points of A which are not in these projections. These points
should lie in the projections pry (A4 x {by} N ;).
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If the projections O; do not cover A, then for each integer i (1 <1< p), there
is a point b; and an integer j; (1 < j; < q) such that

prl(A X {bo} N Uz) - prl(A X {bz} N V,)

For if this is not the case then there is ag € A with (ag, bo) € U; for some ¢ such
that {ag} x BNV; is empty for all j. It follows that {ag} x B can be covered by
the open sets U; and the projections pry({ag} x BNU;) form a covering of B by p
contractible open sets. Hence cat B < p — 1, and since secat A < cat B, we should
have ¢ = 0.

From this fact, we conclude that if p # 0 and g # 0, then the parts of A which
are not possibly covered by the projections O; (1 € j < q), are covered by the
projections pry (A x {b;} NV;,) (1 < ji < ¢). Thus we obtain a covering of A by
p + ¢ contractible sets. Hence cat A < p+ ¢ — 1 = secat A.

The same holds for B; hence secat {iny,ins} = min{cat A, cat B}.

Note that incidentally we proved that cat A = cat B whenever we need p # 0
and g # 0 in order to realize the sectional category with respect to the inclusions
in1 and ing.

4. Topological complexity

The topological complexity of a space A, as defined in [6], is the sectional
category of the diagonal map A: A — Ax A, ie. TC (A) = secat (A). It is known
that cat (A) < TC(A) < cat (4 x A).

The natural question we may ask in relation with the previous sections is: what
about secat (A) where A is a class of maps with target A x A that contains the
diagonal A: A — A x A? Of course secat (A) < TC (A); but, for instance, what is
secat (A) when A is the set of all maps from A to A x A?

REMARK 4.1. For any class A of maps with target A x A, if A contains either
ing or ing: A — A x A, then secat (A) < cat (4). Indeed secat (A) < infcat (A) <
secat (in;) = cat (4) (i = 1 or 2).

PROPOSITION 4.2. For any A in T, consider the maps iny,ing, A: A — AxA.
Then:

secat ({A,in; }) = secat ({A, inz}) = secat ({in1, inz}) = cat (A).
PROOF. Consider the following homotopy commutative diagram:
* — A — %

]

8
The right square is a (homotopy) pullback. If h is either in; or A, which are
both sections of pr;, then the outer rectangle is a (homotopy) pullback as well;
hence the left one is also a homotopy pullback. By Proposition 1.6, with f = ing,
we get secat ({A,in;}) > secat ({x = A}) = cat(4), and with f = A, we get
secat ({iny,ing}) > secat ({x — A}) = cat (A). Use Remark 4.1 to get equalities.
O
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REMARK 4.3. If A is a surface, or any space with cat (4) < 2, then also

secat ({in1, iny, A}) = cat (A). This is clear for cat A < 1. If the sectional category
was strictly less than cat A = 2, we would have a homotopy section for the join of
only 2 of the three maps iny, ing, A, and this is in contradiction with Proposition 4.2.

(1]

2l
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