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We first compute James’ sectional category (secat) of the Ganea map 𝑔𝑘 of any map 𝜄𝑋 in terms of the sectional category of 𝜄𝑋:
we show that secat𝑔

𝑘
is the integer part of secat 𝜄

𝑋
/(𝑘 + 1). Next we compute the relative category (relcat) of 𝑔

𝑘
. In order to do

this, we introduce the relative category of order 𝑘 (relcat𝑘) of a map and show that relcat𝑔𝑘 is the integer part of relcat𝑘𝜄𝑋/(𝑘 + 1).
Then we establish some inequalities linking secat and relcat of any order: we show that secat 𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 ⩽ secat 𝜄𝑋 + 𝑘 + 1 and
relcat𝑘𝜄𝑋 ⩽ relcat𝑘+1𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 + 1. We give examples that show that these inequalities may be strict.

1. Introduction

The“Lusternik-Schnirelmann category” cat𝑋 of a topological
space 𝑋 is the least integer 𝑛 ⩾ 0 such that 𝑋 can be covered
by 𝑛 + 1 open subsets 𝑈𝑖 (0 ⩽ 𝑖 ⩽ 𝑛) such that each inclusion
𝑈𝑖 󳨅→ 𝑋 is nullhomotopic; that is, the based path-space
fibration 𝑃𝑋 → 𝑋 has a partial section on𝑈𝑖. More generally,
the “sectional category” secat𝑝 of a fibration 𝑝 : 𝐸 → 𝑋,
originally defined by Schwarz [1], is the least integer 𝑛 ⩾ 0

such that 𝑋 can be covered by 𝑛 + 1 open subsets with a
partial section of 𝑝 on each of these sets. This notion extends
to any continuous map 𝜄𝑋 : 𝐴 → 𝑋 by taking the standard
homotopy replacement of 𝜄𝑋 by a fibration 𝑝 : 𝐸 → 𝑋 and
setting secat 𝜄𝑋 = secat𝑝. So cat𝑋 = secat(∗ → 𝑋). Sectional
category earned its renown recently as Farber’s notion of
“topological complexity” [2] of a space 𝐴, which measures
the difficulty of solving the motion planning problem: the
topological complexity of 𝐴 is the sectional category of the
diagonal Δ : 𝐴 → 𝐴 × 𝐴 or equivalently of the (unbased)
fibration 𝜋 : 𝐴𝐼 → 𝐴 × 𝐴 : 𝛼 󳨃→ (𝛼(0), 𝛼(1)).

For a given space 𝑋, Ganea [3] defined a sequence of
fibrations 𝑝𝑘 : 𝐸𝑘 → 𝑋 for 𝑘 ⩾ 0, starting with 𝑝0 : 𝑃𝑋 → 𝑋.
The fundamental property of the sequence is that it gives
another criterion for detecting the category: cat𝑋 is the least 𝑛
such that 𝑝𝑛 has a section (at least for a sufficiently nice space:

normal, well pointed). This construction can be generalized
for any map 𝜄𝑋 : 𝐴 → 𝑋; that is, there is a sequence of maps
𝑔𝑘(𝜄𝑋) : 𝐺𝑘(𝜄𝑋) → 𝑋, starting with 𝑔0(𝜄𝑋) = 𝜄𝑋, and secat(𝜄𝑋)
is the least 𝑛 such that 𝑔𝑛(𝜄𝑋) has a homotopy section; see
Definition 3.We recover theGanea constructionwhen𝐴 = ∗;
in this case we write 𝑔𝑘(𝑋) instead of 𝑔𝑘(𝜄𝑋).

In this paper, we first show that the sectional category of
𝑘th Ganea map 𝑔𝑘(𝑋) of 𝑋 is the integer part of cat𝑋/(𝑘 +
1). More generally, the sectional category of the Ganea map
𝑔𝑘(𝜄𝑋) associated with any map 𝜄𝑋 is the integer part of
secat 𝜄𝑋/(𝑘 + 1).

As we may “think of” the sectional category as the degree
of obstruction for a map to have a homotopy section, this
shows us how this degree of obstruction decreases when we
consider the successive Ganea maps. For instance, for a space
𝑋 with cat𝑋 = 7, the successive values of secat(𝑔𝑘(𝑋)) for
0 ⩽ 𝑘 ⩽ 7 are

7 3 2 1 1 1 1 0. (1)

In [4], we used the same Ganea-type construction to
define the “relative category” of a map (relcat for short). As
a particular case, the relative category of the diagonal map
Δ : 𝑋 → 𝑋×𝑋 is the “monoidal topological complexity” of𝑋
defined in [5]. It turns out that the relative category can differ
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from the sectional category by at most one. More precisely,
we have

secat 𝜄𝑋 ⩽ relcat 𝜄𝑋 ⩽ secat 𝜄𝑋 + 1. (2)

This establishes a dichotomy between maps: those for which
the sectional category equals the relative category and those
for which they differ by 1.

In this paper we introduce the “relative category of order
𝑘” (relcat𝑘) and show that the relative category of 𝑘th Ganea
map 𝑔𝑘(𝜄𝑋) associated with a map 𝜄𝑋 is the integer part of
relcat𝑘𝜄𝑋/(𝑘 + 1). When 𝜄𝑋 : ∗ → 𝑋, we write relcat𝑘𝜄𝑋 =

cat𝑘𝑋.

Warning. Despite cat𝑘 is sometimes used in the literature for
Fox’s 𝑘-dimensional category, this is not the meaning of this
notation in this paper.

We link all these invariants together by several inequali-
ties:

secat 𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 ⩽ secat 𝜄𝑋 + 𝑘 + 1,

relcat𝑘𝜄𝑋 ⩽ relcat𝑘+1𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 + 1.
(3)

Finally, we show that, with some hypothesis on the
connectivity of 𝜄𝑋 and the homotopical dimension of the
source of 𝑔𝑘(𝜄𝑋), relcat𝑗 𝜄𝑋 = secat 𝜄𝑋 for all 𝑗 ⩽ 𝑘.

For a given space 𝑋 (resp.: map 𝜄𝑋), the set of integers 𝑘
for which the equality cat𝑘+1𝑋 = cat𝑘𝑋 (resp., relcat𝑘+1𝜄𝑋 =
relcat𝑘𝜄𝑋) holds is an interesting datum about this space
(resp., map). The maximum number of such integers is cat𝑋
(resp., relcat 𝜄𝑋). For instance, for 𝑋 = 𝐾(Q, 1), there is just
one such 𝑘, which is 0: namely,

cat0𝑋 = cat1𝑋 = 2,

cat𝑘𝑋 = 𝑘 + 1 for 𝑘 > 1.
(4)

2. Sectional Category of the Ganea Maps

We use the symbol ≃ both to mean that maps are homotopic
and to mean that spaces are of the same homotopy type. We
denote the integer part of a rational number 𝑞 by ⌊𝑞⌋.

We build all our spaces and maps with “homotopy
commutative diagrams,” especially “homotopy pullbacks”
and “homotopy pushouts,” in the spirit of [6].

Recall the following construction.

Definition 1. For anymap 𝜄𝑋 : 𝐴 → 𝑋, theGanea construction
of 𝜄𝑋 is the following sequence of homotopy commutative
diagrams (𝑖 ⩾ 0):

A

X

𝜂i

𝜄X

𝛼i+1

𝛾i

Fi

𝛽i

Gi

gi

Gi+1 gi+1

where the outside square is a homotopy pullback, the inside
square is a homotopy pushout, and the map 𝑔𝑖+1 = (𝑔𝑖, 𝜄𝑋) :

𝐺𝑖+1 → 𝑋 is the whisker map induced by this homotopy
pushout. The iteration starts with 𝑔0 = 𝜄𝑋 : 𝐴 → 𝑋.

In other words, the map 𝑔𝑖+1 is the join of 𝑔𝑖 and 𝜄𝑋 over
𝑋; namely, 𝑔𝑖+1 ≃ 𝑔𝑖⋈𝑋𝜄𝑋. When we need to be precise, we
denote 𝐺𝑖 by 𝐺𝑖(𝜄𝑋) and 𝑔𝑖 by 𝑔𝑖(𝜄𝑋). If 𝐴 ≃ ∗, we also write
𝐺𝑖(𝑋) and 𝑔𝑖(𝑋), respectively.

Notice that, as the outside square is a homotopy pullback,
𝑔𝑖 and 𝜂𝑖 have a common homotopy fiber, so their connectiv-
ity is equal.

For coherence, let 𝛼0 = id𝐴. For any 𝑖 ⩾ 0, there is
a whisker map 𝜃𝑖 = (id𝐴, 𝛼𝑖) : 𝐴 → 𝐹𝑖 induced by the
homotopy pullback. Thus, 𝜃𝑖 is a homotopy section of 𝜂𝑖.
Moreover, we have 𝛾𝑖 ∘ 𝛼𝑖 ≃ 𝛼𝑖+1.

Proposition 2. For any map 𝜄𝑋 : 𝐴 → 𝑋, we have
𝑔𝑗 (𝑔𝑖 (𝜄𝑋)) ≃ 𝑔𝑖𝑗+𝑖+𝑗 (𝜄𝑋) . (5)

Proof. This is just an application of the “associativity of the
join” (see [7, Theorem 4.8], for instance):

𝑔𝑗 (𝑔𝑖 (𝜄𝑋)) ≃ 𝑔𝑖 (𝜄𝑋) ⋈𝑋 ⋅ ⋅ ⋅ ⋈𝑋𝑔𝑖 (𝜄𝑋) (𝑗 + 1 times)

≃ (𝜄𝑋⋈𝑋 ⋅ ⋅ ⋅ ⋈𝑋𝜄𝑋) ⋅ ⋅ ⋅ (𝜄𝑋⋈𝑋 ⋅ ⋅ ⋅ ⋈𝑋𝜄𝑋)

≃ 𝜄𝑋⋈𝑋 ⋅ ⋅ ⋅ ⋈𝑋𝜄𝑋

((𝑗 + 1) (𝑖 + 1) times)

≃ 𝑔(𝑗+1)(𝑖+1)−1 (𝜄𝑋) .

(6)

Definition 3. Let 𝜄𝑋 : 𝐴 → 𝑋 be any map.
(1) The sectional category of 𝜄𝑋 is the least integer 𝑛 such

that the map 𝑔𝑛 : 𝐺𝑛(𝜄𝑋) → 𝑋 has a homotopy
section: that is, there exists a map 𝜎 : 𝑋 → 𝐺𝑛(𝜄𝑋)

such that 𝑔𝑛 ∘ 𝜎 ≃ id𝑋.
(2) The relative category of 𝜄𝑋 is the least integer 𝑛 such

that themap𝑔𝑛 : 𝐺𝑛(𝜄𝑋) → 𝑋 has a homotopy section
𝜎 and 𝜎 ∘ 𝜄𝑋 ≃ 𝛼𝑛.

We denote the sectional category by secat(𝜄𝑋) and the
relative category by relcat(𝜄𝑋). If 𝐴 ≃ ∗, secat(𝜄𝑋) = relcat(𝜄𝑋)
and it is denoted simply by cat(𝑋); this is the “normalized”
version of the Lusternik-Schnirelmann category.

A lot about the integers cat and secat is collected in [8].
The integer relcat is introduced in [4] and further studied in
[9, 10].

Proposition 4. For any map 𝜄𝑋 : 𝐴 → 𝑋, we have

secat𝑔𝑘 (𝜄𝑋) = ⌊
secat 𝜄𝑋
𝑘 + 1

⌋ . (7)

Proof. By definition, secat𝑔𝑘(𝜄𝑋) is the least integer 𝑛 such
that 𝑔𝑛(𝑔𝑘(𝜄𝑋)), that is, 𝑔𝑘𝑛+𝑘+𝑛(𝜄𝑋), has a homotopy section.
Thus, if secat 𝜄𝑋 = 𝑚, 𝑛 will be such that 𝑘𝑛 + 𝑘 + 𝑛 ⩾ 𝑚 and
𝑘(𝑛 − 1) + 𝑘 + (𝑛 − 1) < 𝑚: that is, 𝑛 ⩾ 𝑚/(𝑘 + 1) − 𝑘/(𝑘 + 1)
and 𝑛 < 𝑚/(𝑘 + 1) + 1/(𝑘 + 1), so 𝑛 = ⌊𝑚/(𝑘 + 1)⌋.



Chinese Journal of Mathematics 3

3. Higher Relative Category

For anymap 𝜄𝑋 : 𝐴 → 𝑋 and two integers 0 ⩽ 𝑘 < 𝑟, consider
the following homotopy commutative diagram:

H
r−k−1
k

Gk gk

X

𝛾
r
k

Gr−k−1

Gr gr

gr−k−1

where the outside square is a homotopy pullback and the
inside square is a homotopy pushout.

Because of the associativity of the join, we also have 𝛾𝑟
𝑘
≃

𝛾𝑟−1 ∘ 𝛾𝑟−2 ∘ ⋅ ⋅ ⋅ ∘ 𝛾𝑘+1 ∘ 𝛾𝑘. For coherence, let 𝛾
𝑘

𝑘
= id𝐺𝑘 .

Definition 5. Let 𝜄𝑋 : 𝐴 → 𝑋 be anymap.The relative category
of order 𝑘 of 𝜄𝑋 is the least integer 𝑛 ⩾ 𝑘 such that the map
𝑔𝑛 : 𝐺𝑛(𝜄𝑋) → 𝑋 has a homotopy section 𝜎 and 𝜎 ∘ 𝑔𝑘 ≃ 𝛾

𝑛

𝑘
.

We denote this integer by relcat𝑘𝜄𝑋. In order to avoid the
prefix “rel” when 𝐴 ≃ ∗, we write cat𝑘𝑋 = relcat𝑘𝜄𝑋 in this
case.

Remark 6. Notice that relcat0𝜄𝑋 = relcat 𝜄𝑋 and that, clearly,
𝑘 ⩽ relcat𝑘𝜄𝑋 ⩽ relcat𝑘+1𝜄𝑋 for any 𝑘. Also notice that
relcat𝑘𝜄𝑋 = 𝑘 if and only if 𝑔𝑘(𝜄𝑋) is a homotopy equivalence.
In particular, cat𝑘∗ = 𝑘 for any 𝑘.

Following the same reasoning as in Proposition 4, we have
the following.

Proposition 7. For any map 𝜄𝑋 : 𝐴 → 𝑋, we have

relcat𝑔𝑘 (𝜄𝑋) = ⌊
relcat𝑘𝜄𝑋
𝑘 + 1

⌋ . (8)

Proposition 8. For any map 𝜄𝑋 : 𝐴 → 𝑋, any 𝑘, we have

secat 𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 ⩽ secat 𝜄𝑋 + 𝑘 + 1. (9)

Proof. Only the second inequality needs a proof. Let 𝑛 =

secat 𝜄𝑋 and let 𝜎 be a homotopy section of 𝑔𝑛. Consider the
following homotopy commutative diagram:

H
n
kGk Gk

gk gk

XX

𝛾
n+k+1
k

𝛾n+k+1
n

Gn+k+1

gn

gn+k+1

𝜎
Gn

𝜎
󳰀 g

󳰀

where 𝜎󸀠 = (𝜎 ∘ 𝑔𝑘, id𝐺𝑘) is the whisker map induced by
the right homotopy pullback. We have 𝑔󸀠 ∘ 𝜎󸀠 ≃ id𝐺𝑘 and
the left square is a homotopy pullback by the Prism lemma
(see [7, Lemma 1.3], for instance). The map 𝜎+ = 𝛾

𝑛+𝑘+1

𝑛
∘ 𝜎

is a homotopy section of 𝑔𝑛+𝑘+1 and, moreover, 𝜎+ ∘ 𝑔𝑘 ≃
𝛾
𝑛+𝑘+1

𝑘
∘ 𝑔
󸀠
∘ 𝜎
󸀠
≃ 𝛾
𝑛+𝑘+1

𝑘
. So relcat𝑘𝜄𝑋 ⩽ 𝑛 + 𝑘 + 1.

Theorem 9. For any map 𝜄𝑋 : 𝐴 → 𝑋, any 𝑘, we have

𝑘 ⩽ relcat𝑘𝜄𝑋 ⩽ relcat𝑘+1𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 + 1. (10)

Proof. The first two inequalities are our Remark 6; only the
third needs a proof. Let 𝑛 = relcat𝑘𝜄𝑋 and let 𝜎 be a homotopy
section of 𝑔𝑛 such that 𝜎 ∘ 𝑔𝑘 ≃ 𝛾

𝑛

𝑘
. Consider the following

homotopy commutative diagram:

Fk

A 𝜎 Fn

𝜂n A

Gk+1 Gk
Gk+1

X X
𝜎

Gn

𝛾n

Gn+1

gn

The map 𝜎+ = 𝛾𝑛 ∘ 𝜎 is a homotopy section of 𝑔𝑛+1 and 𝜎
+
∘

𝑔𝑘+1 ≃ 𝛾
𝑛+1

𝑘+1
, so relcat𝑘+1𝜄𝑋 ⩽ 𝑛 + 1.

So relcat𝑘𝜄𝑋 increases at most by one when 𝑘 increases by
one.

Corollary 10. For any map 𝜄𝑋 : 𝐴 → 𝑋, any 𝑘, we have

relcat 𝜄𝑋 ⩽ relcat𝑘𝜄𝑋 ⩽ relcat 𝜄𝑋 + 𝑘. (11)

Remark 11. As a consequence ofTheorem 9 and Corollary 10,
if 𝑛 = relcat 𝜄𝑋, there are at most 𝑛 integers 𝑘 for which
relcat𝑘+1𝜄𝑋 = relcat𝑘𝜄𝑋.

Example 12. If 𝜄𝑋 is a homotopy equivalence, then 𝑔𝑘 is a
homotopy equivalence for all 𝑘. So relcat𝑘𝜄𝑋 = 𝑘 for all 𝑘.

Example 13. Let 𝐴 ̸≃ ∗ and consider the map 𝜄∗ : 𝐴 → ∗.
We have secat 𝜄∗ = 0 because 𝜄∗ has a (unique) section. By
Proposition 8, relcat𝑘𝜄∗ = 𝑘 or 1+𝑘. Indeed, for any 𝑘, themap
𝛾
𝑘+1

𝑘
: 𝐴 ⋈ ⋅ ⋅ ⋅ ⋈ 𝐴 (𝑘 + 1 times) → 𝐴 ⋈ ⋅ ⋅ ⋅ ⋈ 𝐴 (𝑘 + 2 times)

is homotopic to the null map, so 𝜎 ∘ 𝑔𝑘 ≃ 𝛾
𝑘+1

𝑘
, where 𝜎 :

∗ → 𝐺𝑘+1(𝜄∗). But we cannot have relcat𝑘𝜄∗ = 𝑘 unless𝑔𝑘(𝜄∗) :
𝐴 ⋈ ⋅ ⋅ ⋅ ⋈ 𝐴 (𝑘 + 1 times) → ∗ is a homotopy equivalence.

If we choose a space 𝐴 such that 𝐴 ̸≃ ∗ but Σ𝐴 ≃ ∗ (the
2-skeleton of the Poincaré homology 3 spheres, for instance),
then 𝐴 ⋈ 𝐴 ≃ Σ𝐴 ∧ 𝐴 ≃ ∗ and 𝑔𝑘 is a homotopy equivalence
for all 𝑘 > 0, so relcat0𝜄∗ = 1 and relcat𝑘𝜄∗ = 𝑘 for all 𝑘 > 0.
However, if we chose a simply connected CW-complex 𝐴 (in
order that 𝐴 ⋈ ⋅ ⋅ ⋅ ⋈ 𝐴 ̸≃ ∗), then relcat𝑘𝜄∗ = 𝑘 + 1 for all 𝑘.

Example 14. Consider anyCW-complex𝑋with cat𝑋 = 1 and
the map 𝜄𝑋 : ∗ → 𝑋. We have secat 𝜄𝑋 = relcat 𝜄𝑋 = cat𝑋 = 1.
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Let us compute cat1𝑋 = relcat1𝜄𝑋. Notice that𝐺1(𝑋) ≃ ΣΩ𝑋.
By Theorem 9, we know that 1 ⩽ cat1𝑋 ⩽ 2. But we cannot
have cat1𝑋 = 1 because 𝑔1 is not a homotopy equivalence, so
cat1𝑋 = 2. By the way, we can say that 𝛾2

1
: ΣΩ𝑋 → 𝐺2(𝑋)

factorizes up to homotopy through 𝑔1 : ΣΩ𝑋 → 𝑋.

Example 15. More generally, if relcat 𝜄𝑋 = 1, we have 𝑘 ⩽

relcat𝑘𝜄𝑋 ⩽ 1 + 𝑘 for any 𝑘 by Corollary 10. Thus, relcat𝑘𝜄𝑋 =
𝑘 + 1 while 𝑔𝑘(𝜄𝑋) is not a homotopy equivalence (and if
any 𝑛 exists such that 𝑔𝑛(𝜄𝑋) is a homotopy equivalence, then
relcat𝑘𝜄𝑋 = 𝑘 for all 𝑘 ⩾ 𝑛).

Suppose we are given any map 𝜄𝑋 : 𝐴 → 𝑋 with
secat(𝜄𝑋) ⩽ 𝑛 and any homotopy section 𝜎 : 𝑋 → 𝐺𝑛

of 𝑔𝑛 : 𝐺𝑛 → 𝑋. For any 𝑘 ⩽ 𝑛, consider the following
homotopy pullbacks:

Q
𝜋

Gk

𝜋󳰀 𝜃
n
k

Gk H
n
k Gk𝜎 𝜂

k
n

𝜂
n
k

gk gk

X X
𝜎

Gn gn

where 𝜃𝑛
𝑘
= (𝛾
𝑛

𝑘
, id𝐺𝑘) is the whisker map induced by the

homotopy pullback 𝐻𝑛
𝑘
. Notice that 𝜂𝑘

𝑛
∘ 𝜃
𝑛

𝑘
≃ id𝐺𝑘 . By the

Prism lemma, we know that the homotopy pullback of 𝜎 and
𝜂
𝑛

𝑘
is indeed𝐺𝑘 and that 𝜂

𝑘

𝑛
∘ 𝜎 ≃ id𝐺𝑘 . Also notice that 𝜋 ≃ 𝜋

󸀠

since 𝜋 ≃ 𝜂𝑘
𝑛
∘ 𝜃
𝑛

𝑘
∘ 𝜋 ≃ 𝜂

𝑘

𝑛
∘ 𝜎 ∘ 𝜋

󸀠
≃ 𝜋
󸀠.

Proposition 16. For any map 𝜄𝑋 : 𝐴 → 𝑋 with secat(𝜄𝑋) ⩽ 𝑛
and any homotopy section 𝜎 : 𝑋 → 𝐺𝑛 of 𝑔𝑛 : 𝐺𝑛 → 𝑋,
with the same definitions and notations as above, the following
conditions are equivalent:

(i) 𝜎 ∘ 𝑔𝑘 ≃ 𝛾
𝑛

𝑘
.

(ii) 𝜋 has a homotopy section.
(iii) 𝜋 is a homotopy epimorphism.
(iv) 𝜃𝑛
𝑘
≃ 𝜎.

Proof. We have the following sequence of implications:

(i)⇒ (ii): since 𝜎 ∘ 𝑔𝑘 ≃ 𝛾
𝑛

𝑘
≃ 𝜂
𝑛

𝑘
∘ 𝜃
𝑛

𝑘
∘ id𝐺𝑘 , we have

a whisker map (𝑔𝑘, id𝐺𝑘) : 𝐺𝑘 → 𝑄 induced by the
homotopy pullback𝑄which is a homotopy section of
𝜋.
(ii)⇒ (iii): it is obvious.
(iii)⇒ (iv): we have 𝜃𝑛

𝑘
∘𝜋 ≃ 𝜎∘𝜋

󸀠
≃ 𝜎∘𝜋 since𝜋 ≃ 𝜋󸀠.

Thus, 𝜃𝑛
𝑘
≃ 𝜎 since 𝜋 is a homotopy epimorphism.

(iv) ⇒ (i): we have 𝜎 ∘ 𝑔𝑘 ≃ 𝜂
𝑛

𝑘
∘ 𝜎 ≃ 𝜂

𝑛

𝑘
∘ 𝜃
𝑛

𝑘
≃

𝛾
𝑛

𝑘
.

Theorem 17. Let 𝜄𝑋 : 𝐴 → 𝑋 be a (𝑞 − 1) connected map.
If for some 𝑘 ⩽ secat 𝜄𝑋, 𝐺𝑘 has the homotopy type of a CW-
complex with dimension strictly less than (secat 𝜄𝑋 + 1)𝑞 − 1,
then relcat𝑗𝜄𝑋 = secat 𝜄𝑋 for all 𝑗 ⩽ 𝑘.

This is an immediate consequence of the following.

Proposition 18. Let 𝜄𝑋 : 𝐴 → 𝑋 be a (𝑞 − 1) connected map
with secat 𝜄𝑋 ⩽ 𝑛. If for some 𝑘 ⩽ 𝑛, 𝐺𝑘 has the homotopy type
of a CW-complex with dimension strictly less than (𝑛+1)𝑞−1,
then 𝜎∘𝑔𝑘 ≃ 𝛾𝑛𝑘 for any homotopy section 𝜎 of𝑔𝑛, so relcat𝑘𝜄𝑋 ⩽
𝑛.

Proof. Recall that, for any 𝑖 ⩾ 0, 𝑔𝑖 is the (𝑖 + 1)-fold join of
𝜄𝑋. Thus, by [11, Theorem 47], we obtain that 𝑔𝑖 : 𝐺𝑖 → 𝑋 is
(𝑖 + 1)𝑞 − 1-connected. As 𝑔𝑖 and 𝜂

𝑘

𝑖
have the same homotopy

fiber, which is (𝑖+1)𝑞−2-connected, we see that 𝜂𝑘
𝑖
: 𝐻
𝑖

𝑘
→ 𝐺𝑘

is (𝑖 + 1)𝑞 − 1-connected, too. By [12, Theorem IV.7.16], this
means that, for every CW-complex 𝐾 with dim𝐾 < (𝑖 +

1)𝑞 − 1, 𝜂𝑘
𝑖
induces a one-to-one correspondence [𝐾,𝐻𝑖

𝑘
] →

[𝐾, 𝐺𝑘]. Apply this to 𝐾 ≃ 𝐺𝑘 and 𝑖 = 𝑛: since 𝜃𝑛
𝑘
and 𝜎

are both homotopy sections of 𝜂𝑘
𝑛
, we obtain 𝜃

𝑛

𝑘
≃ 𝜎, and

Proposition 16 gives the desired result.

Example 19. Let𝑋 be the Eilenberg-Mac Lane space𝐾(Q, 1).
It is known that cat(𝑋) = 2 and that 𝐺1(𝑋) ≃ ΣΩ𝑋 has
the homotopy type of a wedge of circles (see [8, Example 1.9
and Remark 1.62], for instance). ByTheorem 9, we know that
2 ⩽ cat1𝑋 ⩽ 3. Because dim𝐺1(𝑋) = 1 < (cat𝑋 + 1) − 1 = 2,
we have 𝜎 ∘ 𝑔1 ≃ 𝛾

2

1
for any homotopy section 𝜎 of 𝑔2(𝑋)

and, thus, cat1𝑋 = 2. Moreover, 𝑔𝑘 is never a homotopy
equivalence, so cat𝑘𝑋 > 𝑘 for any 𝑘; thus, cat𝑘𝑋 = 𝑘 + 1

for 𝑘 ⩾ 1.
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